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In everyday experience, we interact with objects and we navigate through space. Extensive research has
revealed that these visual behaviors are mediated by separable object-based and scene-based processing
mechanisms in the mind and brain. However, we also frequently view near-scale spaces, for example,
when sitting at the breakfast table or preparing a meal. How should such spaces (operationalized here as
“reachspaces”), which contain multiple objects but not enough space to navigate through, be considered
in this dichotomy? Here, we used visual search to explore the possibility that reachspace views are
perceptually distinctive from full-scale scene views as well as object views. In the first experiment, we
found evidence for this dissociation. In the second experiment, we found that the perceptual differences
between reachspaces and scenes were substantially larger than those between scene categories (e.g.,
kitchens vs. offices). Finally, we provide computational support for this perceptual dissociation: Deep
neural network models also naturally separate reachspaces from both scenes and objects, suggesting that mid-
to high-level features may underlie this dissociation. Taken together, these results demonstrate that our
perceptual systems are sensitive to systematic visual feature differences that distinguish objects, reachspaces,
and full-scale scene views. Broadly, these results raise the possibility that our visual system may use different
perceptual primitives to support the perception of reachable and navigable views of the world.

Public Significance Statement
The present study suggests that views of near-scale space (e.g., kitchen counters, office desktops)
look systematically different than views of far-scale space (e.g., full-scale kitchens, full-scale
offices). These perceptual differences were substantially larger than those between scene categories
(e.g., kitchens vs. offices).
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As we behave in the world, there is a clear distinction between
spatially compact elements of the environment that we can hold
and spatially extended elements that we can move through,
namely, between objects and scenes (Epstein, 2005; Henderson &
Hollingworth, 1999). Extensive evidence from development, neu-
ropsychology, and cognition research suggests that this fundamen-
tal division is reflected in our cognitive architecture, with different
developmental trajectories, disorders, and processing demands as-
sociated with each (e.g., D. P. Carey, Dijkerman, Murphy,

Goodale, & Milner, 2006; S. Carey & Xu, 2001; Epstein, Deyoe,
Press, Rosen, & Kanwisher, 2001; Henderson & Hollingworth,
1999; Landis, Cummings, Benson, & Palmer, 1986; Spelke, 1990;
Steeves et al., 2004). This distinction is also evident in the visual
processing stream, in which distinct brain regions are sensitive to
object-based and scene-based perceptual properties, and support
object- and scene-related processing, respectively (e.g., Bieder-
man, 1987; Epstein & Kanwisher, 1998; Greene & Oliva, 2009,
2010; Grill-Spector, Kourtzi, & Kanwisher, 2001).

However, real-world views of objects and scenes exist along a
continuum: between the close-up view of a carrot and the far-scale
view of the kitchen is the near-scale view of the countertop on
which you prepared the food. Consider also the view of the desk
as you type an e-mail, or a workbench as you solder a wire, or a
place setting as you eat a meal. These views, which we here refer
to as “reachspaces” (see Figure 1), are like scenes, in that they
extend beyond the view and contain multiple objects. But unlike
scenes, you do not navigate your body through them; instead, the
interaction demands are more object-like in that they involve
coordinated hand actions.

Such intermediate views have historically been treated as equiv-
alent to navigable-scale scenes (Intraub, 2010) or have been ac-
knowledged as an uneasy fit in the object–scene dichotomy and
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then consequently omitted from scene perception research (cf.
Henderson & Hollingworth, 1999). However, this omission may
have obscured important distinctions, as previous work suggests
that the ways in which we act, remember, and deploy attention
may differ for near and far space. For example, boundary exten-
sion, the anticipatory representation of the space beyond the edge
of an image, is stronger for near space than far space (Bertamini,
Jones, Spooner, & Hecht, 2005; Intraub, Bender, & Mangels,
1992). Additionally, attention can be impaired for spaces near the
body but not farther way, and vice versa, in patients with hemispa-
tial neglect (Cowey, Small, & Ellis, 1994; Halligan & Marshall,
1991). Finally, evidence from the visuomotor literature highlights
that the distinction between what is in and out of reach is a
prominent one, with near-space coding evident extensively across
dorsal stream regions (e.g., Gallivan, Cavina-Pratesi, & Culham,
2009; Maravita & Iriki, 2004). Thus, there is both behavioral and
neural evidence that there may be important differences in the
processing of near and far space.

In the present study, we asked whether these functional differ-
ences between scales of space run alongside perceptual differences
in their visual appearance. Specifically, we tested whether there
are systematic perceptual differences between reachspaces and
scenes. On one hand, both reachspaces and scenes depict extended
surfaces with multiple objects, and thus may rely on common

perceptual features. Consistent with this reasoning, some studies
have used views of reachable spaces to highlight mechanisms of
scene perception, with the assumption that near- and far-scale
views can be used interchangeably (e.g., Epstein, Graham, &
Downing, 2003; Võ & Wolfe, 2013). On the other hand, reach-
spaces contain small objects, whereas full-scene views are domi-
nated by large objects, and small and large objects have dissociable
perceptual features (Long, Konkle, Cohen, & Alvarez, 2016).
There may also be differences in their global layout features, as
previous computational models have leveraged natural image sta-
tistics to estimate the depicted depth in an image along the full
object–scene continuum (e.g., Torralba & Oliva, 2002, 2003).
These results raise the possibility that there are different image
statistics for near- and far-scale space, which human perceptual
systems may be sensitive to, enabling views of reachspaces to
dissociate from views of scenes in perception.

We also examined whether reachspace views perceptually dis-
sociate from object views. Although objects are bounded entities,
images of objects on a naturalistic background must necessarily
depict some space, leading to some ambiguity with reachspace
views. However, it is possible to operationalize the differences
between these two kinds of views in terms of their implied viewing
distances (cf. Intraub, 2010, 2012). Object views gives a sense of
a very close viewing distance (�8–12 in. away) and feature a

Figure 1. Examples of the object, reachspace, and scene stimuli. Object images consisted of single objects on
their natural backgrounds. Reachspace images consisted of close-scale spaces, delineated by a horizontal surface
and filled with objects, where everyday tasks are typically performed. Scene images consisted of full views of
indoor rooms. Note that the photographs used in this figure are not the images used in the experiment, but rather
are copyright-free images selected to closely match the experimental stimuli (see appendix for image attribu-
tions). For examples of the actual images used in the experiment, see our repository at osf.io/7j6cx. See the
online article for the color version of this figure.
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central object on a homogeneous background, cropped so that it
fills much of the image, with minimal to no “layout” edges, for
example, where a counter meets a back wall or a corner. In
contrast, reachspace views convey a sense of the space about of 3
to 4 ft. from the viewer, have salient 3D layout features (e.g., a flat
horizontal surface and a back wall), and contain an array of
contextually related objects. Object views are scaled such that a
hand would fill the frame, whereas reachspace views are scaled
such that both arms would fit in the space. Thus, object and
reachspace views are sampled from systematically different views
of the environment, and as such, they may have different visual
feature properties.

To examine whether reachspaces are perceptually distinct from
scenes and objects, we employed both behavioral and computa-
tional methods. First, we used a visual search paradigm, in which
the speed of search depends on how visually distinctive the target
is from the distractors (Duncan & Humphreys, 1989; Wolfe &
Horowitz, 2017). Across several experiments, we found that reach-
spaces systematically dissociate from both full-scale scenes and
singleton objects in search displays, with an effect that is substan-
tially larger than the perceptual difference between semantic cat-
egories of scenes. Second, examining deep convolutional neural
networks trained to perform either object or scene recognition, we
found that both kinds of networks naturally distinguish reachspace
views from both objects and scenes in middle and later layers. This
result provides computational support for the existence of a dis-
tinctive visual representation of reachspaces and begins to address
questions about the nature of these feature distinctions. Broadly,
these results raise the possibility that there may be separate per-
ceptual processing mechanisms for reachable and navigable space.

Experiment 1: A Three-Way Dissociation in Visual
Search Performance

To explore the possibility that reachspaces perceptually disso-
ciate from objects and scenes, we used a visual search paradigm
(e.g., following Cohen, Alvarez, Nakayama, & Konkle, 2017;
Long, Störmer & Alvarez, 2017). Under the logic of a visual
search task, targets that are different from distractors will stand out
and will be faster to find in a search array than targets that are
similar (Duncan & Humphreys, 1989). Thus, for example, if
reachspaces are perceptually distinct from scenes, then it should be
easier to find a reachspace among scenes than among other reach-
spaces. Visual search speeds are strongly influenced by visual
similarity (e.g., leveraging feature differences between line orien-
tations, curvature, and shape) and are largely unaffected by non-
visual (semantic) information in the displayed items (see Wolfe &
Horowitz, 2017). Thus, any differences in visual search times
between objects, reachspaces, and scenes would provide evidence
for a dissociation at the level of visual perception. Experiment 1
tests this hypothesis on two image sets: images in Experiment 1a
are matched in luminance and contrast, whereas images in Exper-
iment 1b are additionally matched in global spatial frequency
content. This image set manipulation enables us to test for visual
differences over and above relatively primitive global image sta-
tistics.

Method

Participants. Forty-four participants were enrolled (N � 22
each in Experiments 1a and 1b). These sample sizes were esti-
mated to provide 80% power using a simulation method (see
Appendix for details). Demographic information was not recorded
from individual participants, but all participants were between the
ages of 18 and 35 years, had normal or corrected to normal vision,
and were recruited from a participant population that consisted of
65% women. All participants gave informed consent and were
compensated with $10 or class credit for their participation. All
procedures were approved by the Harvard University Human Sub-
jects Institutional Review Board.

Stimuli. The stimulus set consisted of views of objects, reach-
spaces, and scenes (examples in Figure 1). Each of these image
scales contained 12 images from each of six semantic categories
(bathroom, bedroom, craft room, dining room, kitchen, office),
yielding 72 images per scale. Object images depicted close-scale
views (within 8–12 in. from the object) of single objects on their
natural background, for example, a close-up view of a sponge with
a small amount of granite countertop visible beyond it. Reachspace
images depicted near-scale spaces that were approximately as deep
as arm’s reach (3–4 ft.), consisting of multiple small objects
arrayed on a horizontal surface, for example, a knife, cutting
board, and an onion arrayed on kitchen counter. Scene images
depicted full views of the interior of rooms, for example, a view of
a home office. Images were collected from Google Images under
fair use and were scaled to a resolution of 800 � 1280 pixels. All
stimuli are available for download on the Open Science Frame-
work (https://osf.io/7j6cx).

Images were controlled using the SHINE toolbox (Willenbockel
et al., 2010) to be matched in their average luminance (Experiment
1a), and in both average luminance and in spatial frequency
(Experiment 1b). Examples are shown in Figure 2B. Images for
Experiment 1a were luminance matched using the lumMatch func-
tion run with the default settings, and images for Experiment 2
were spatial-frequency matched using the specMatch function,
then luminance matched using the histMatch function, both with
default parameters.

Design. Participants searched for a single target in an array of
distractors (Figure 2A). Each trial started with a fixation cross in
the center of the screen for 500 ms. Next, a preview of the target
appeared in the center of the screen for 500 ms. Following a
second 500-ms fixation screen, the search display appeared, con-
sisting of six images arranged in a circle to be equidistant from the
center of the screen. No images were placed on the vertical
midline. One of these images was always the target. Participants
pressed the spacebar when they found the target, and then all
images in the display were replaced by Xs. Participants clicked on
the X corresponding to the target location. For correct responses,
the next trial would start after a variable time interval lasting
between 500 ms and 1,000 ms, but for incorrect responses, par-
ticipants received a feedback message for 3 s before the next trial
began.

The experiment was a 3 � 3 design: On a given trial, a target
could be an object, a reachspace, or a scene, and could be dis-
played among distractors that were all objects, all reachspaces, or
all scenes, leading to a fully-crossed design with a total of nine
conditions. There were 50 trials in each of the nine conditions. On
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every trial, targets and distractors were randomly selected from the
appropriate image scale, with the constraint that none of them
could have the same semantic category as the target. Thus, for
example, a kitchen reachspace target could appear among scene
distractors that included bathrooms, bedroom, craft rooms, dining
rooms, or offices, but not kitchens. The experiment began with 10
practice trials (practice images were drawn from the same set used
in the experimental trials), followed by nine blocks of 50 experi-
mental trials.

Apparatus. Experiments were run on a 24-in. iMac running
OS 5.10.8 in MATLAB 7.10.0 (The MathWorks, Natick, MA)
using the Psychophysics Toolbox (Brainard, 1997; Kleiner, Brain-
ard, & Pelli, 2007; Pelli, 1997). The monitor was set to a spatial
resolution of 1,920 � 1,200 pixels and a refresh rate of 60 Hz.
Observers were seated approximately 57 cm from the monitor, so
1 cm on the screen subtended 1° of visual angle. All images were

shown at a size of 8° � 5° visual angle (300 � 188 pixels).
Responses were recorded on a standard Apple Keyboard.

Data analysis. Reaction time (RT) data were trimmed to
remove outliers using the following procedure. First, incorrect
trials and trials with RTs less than 200 ms were excluded. Mean
RT was then calculated for each condition and each participant,
and RTs that fell more than three standard deviations away from
the mean (for a given participant on a given condition) were
discarded (Rousseeuw & Croux, 1993). RTs were log transformed
prior to trimming to account for the fact that RT distributions are
right-skewed (Palmer, Horowitz, Torralba, & Wolfe, 2011; Rat-
cliff, 1979). This procedure led to the exclusion of 1.2% of trials
from Experiment 1a and 0.6% of trials from Experiment 1b.
Individual participants who lost more than 15% of their trials to
this trimming were replaced. One subject was dropped from Ex-
periment 1a for this reason and replaced, and no subjects were

Figure 2. Trial design, stimuli and results for Experiment 1. A. Example time course of a single trial. A target
was presented for 500 ms, followed by a 500 ms blank, followed by the search display. The search display
contained 6 items, one of which was the target. Participants pressed the space bar when they found the target,
replacing images by Xs, then clicked the location of the target with the mouse. B. The stimuli for Experiment
1a (top) and 1b (bottom). Images in Experiment 1a were matched in mean luminance. Images in Experiment 1b
were matched in both luminance and spatial frequency. C. Reaction time results for Experiment 1a (top) and 1b
(bottom). Reaction times is plotted for each target-distractor combination, with the first set of bars reflecting
Object targets, the second set of bars reflecting Reachspace targets, and the third set of bars reflecting Scene
targets. Stars mark significant differences. Error bars show within-subject standard error of the mean (Morey,
2008). Note that the photographs used in this figure are not the images used in the experiment, but rather are
copyright-free images selected to closely match the experimental stimuli (see appendix for image attributions).
For examples of the actual images used in the experiment, see our repository at osf.io/7j6cx.
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dropped from Experiment 1b. Planned pairwise one-tailed t tests
were used to assess statistical significance. Effect size was calcu-
lated using the classical Cohen’s d: the difference between the
means of the conditions divided by the pooled variance.

Results and Discussion

Figure 2C shows the results of the visual search experiments
using luminance-matched images (Experiment 1a) and spatial-
frequency-matched images (Experiment 1b). To interpret the pat-
tern of results across the nine conditions (3 target view types � 3
distractor view types), we examined the conditions in pairs: for
example, if objects are perceptually distinct from scenes, they
should be found faster in displays of scene distractors than in
displays of object distractors. Indeed, as expected, objects and
scenes dissociate from each other: Object targets were found more
quickly among scenes than among other objects (Experiment 1a,
t[21] � 4.59, p � .001, d � 0.52; Experiment 1b, t[21] � 4.20,
p � .001, d � 0.48). In the complementary comparison, scenes
targets were likewise found more quickly among objects than
among other scenes (Experiment 1a, t[21] � 13.93, p � .001, d �
2.33; Experiment 1b, t[21] � 12.37, p � .001, d � 1.98).

In the critical comparisons, we found that reachspaces dissoci-
ated from scenes. That is, reachspace targets were found faster
among scenes than among other reachspaces (Experiment 1a,
t[21] � 2.09, p � .024, d � 0.22; Experiment 1b, t[21] � 3.04,
p � .003, d � 0.34), and likewise, scenes targets were found faster
among reachspaces than other scenes (Experiment 1a, t[21] �
3.92, p � .001, d � 0.62; Experiment 1b, t[21] � 5.64, p � .001,
d � 0.74). Additionally, we found that reachspaces dissociated
from objects: Reachspace targets were found more quickly among
objects than among other reachspaces (Experiment 1a, t[21] �
8.52, p � .001, d � 1.02; Experiment 1b, t[21] � 7.51, p � .001,
d � 0.92), and corresponding object targets were found more
quickly among reachspaces than among other objects (Experiment
1a, t[21] � 1.74, p � .048, d � 0.21; Experiment 1b, t[21] � 3.18,
p � .002, d � 0.35).

These results, replicated across two experiments, provide evi-
dence that reachspaces are perceptually different from both full-
scale scenes and singleton objects. Given that both reachspaces
and scenes have a spatial layout and consist of multiple objects, it
could have been the case that they are visually encoded using the
same perceptual features. However, the visual search data instead
suggest that the perceptual content of views of reachable space is
systematically different from the perceptual content of full-scale
scenes. Furthermore, these behavioral dissociations persist in
spatial-frequency matched images (Experiment 1b), indicating that
differences in global spatial frequency or luminance content are
not solely responsible for distinguishing reachspaces from objects
and scenes. Finally, these data do not require that objects, reach-
spaces, and scenes be separate categories in the mind a priori; it is
possible that participants could perform this task using on-the-fly
categories developed in the context of this particular visual search
design. However, critically, the main conclusion that there are
perceptual feature differences between these three scales does not
depend on the exact strategy used in performing the task.

In addition, broader trends in the data shed some light on the
nature of this three-way dissociation, suggesting that reachspaces
are perceptually intermediate. That is, the RT differences imply

that objects and scenes are the most perceptually dissimilar and
that reachspaces come somewhere in between: Scenes were found
more quickly among objects than among reachspaces (Experiment
1a, t[21] � 13.02, p � .001, d � 1.68; Experiment 1b, t[21] �
11.32, p � .001, d � 1.44; post hoc paired one-sided t test).
Likewise, objects were found more quickly among scenes than
among reachspaces (Experiment 1a, t[21] � 5.55, p � .001, d �
0.35; Experiment 1b did not reach significance, t[21] � 1.27, p �
.106, d � 0.14). Additionally, we find further evidence that reach-
spaces are perceptually intermediate when considering overall
search times by target: Object targets, overall, were found faster
than reachspaces, which were found faster than scenes (Experi-
ment 1a main effects: object targets � 480 ms; reachspaces � 726
ms; scenes � 861 ms; 3 � 2 ANOVA main effect of scale, F[2,
194] � 111.38, p � .001; Experiment 1b main effects: object
targets � 689 ms; reachspaces � 979 ms; scenes � 1,172 ms; 3 �
2 ANOVA main effect of scale, F[2, 194] � 119.36, p � .001).
Taken together, these visual search dissociations demonstrate that
reachspaces are perceptually distinguishable from, and intermedi-
ate to, objects and scenes.

Experiment 2: Pitting the Effect of Image Scale
Against Scene Category

How substantial are the perceptual differences between reach-
spaces and full-scale scenes? Will any meaningful distinction
among visual environments give rise to similar visual search
effects, or do the present dissociations constitute a particularly
sizable difference? To put the perceptual dissociation between
reachspaces and scenes into context, we compared it with an
alternative distinction that is critical for scene processing: semantic
category. It is clear that the visual system is sensitive to perceptual
features that help distinguish among scene categories: Within a
brief glance, observers can readily identify the semantic category
of a scene, for example, whether it is a kitchen or an office (Potter,
1975, 1976). The aim of Experiment 2 was to assess the magnitude
of scene-category effects on visual search time and compare this
with the magnitude of the reachspace-scene effect. Specifically,
we tested whether searching for a scene target was faster when the
distractors differed by scene category, by scale of space, or both
(Figure 3A).

Method

Participants. Twenty-seven participants were enrolled in Ex-
periment 2. This sample size was estimated to provide 80% power
according to the same simulation used for Experiment 1 (see
Appendix). As before, participants were between the ages of 18
and 35 years and had normal or corrected-to-normal vision. All
participants gave informed consent, were recruited from the Har-
vard Psychology Department participant pool, and were compen-
sated with $10 or class credit for their participation. All procedures
were approved by the Harvard University Human Subjects Insti-
tutional Review Board.

Stimuli. The stimulus set consisted of 72 images of scenes
from six categories and 72 images of reachspaces from six cate-
gories (this constituted all the scene and reachspace images from
Experiment 1a). These images were matched in average lumi-
nance.
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Design. Participants searched for a target among distractors
with the same trial timing and display parameters as in Experiment
1 but with different target-distractor conditions (Figure 3A). The
target in this experiment was always a scene image. The distractors
could be either reachspaces or scenes, drawn from either the same
or different semantic category as the target scene. There were 30
trials in each of these four conditions (same scale/same category;
different scale/same category; same scale/different category; dif-
ferent scale/different category). To counterbalance scene category,
scene targets were drawn equally from the six semantic categories,
appearing five times each in each condition. For conditions in
which distractors were from a different semantic category than the
target, these were balanced such that each target category appeared
among each of the other five distractor categories exactly once.
Trials were split into two blocks of 60 trials, with 11 practice trials
at the beginning. Trial order was randomized over the experiment.

Data analysis. The data trimming procedure was the same as
in Experiment 1. This procedure led to the exclusion of 2.0% of
trials from Experiment 2. One subject was dropped from Experi-
ment 2 for losing more than 15% of their trials to trimming, and
was replaced. Planned pairwise one-tailed t tests were used to
assess statistical significance, and Cohen’s d was used to estimate
effect size as described in Experiment 1.

Results and Discussion

Average RTs for Experiment 2 are shown in Figure 3B. Search
was slowest when the target scene matched the distractors in both
category and scale (e.g., a bathroom scene among other bathroom
scenes; 1,290 ms, SEM � 29 ms), establishing a baseline condition
from which to compare the other conditions. When distractors
differed from the target in their semantic category alone (e.g., an
office scene among dining room scenes), search was significantly
faster than the baseline (130 ms faster, t[26] � 3.51 p � .001, d �

0.57). This result confirms that different scene categories are
perceptually dissociable. Search was also significantly faster than
baseline when the distractors differed in scale (e.g., an office scene
among office reachspaces: 225 ms faster than baseline, t[26] �
6.42, p � .001, d � 1.02). This result confirms that reachspaces
are perceptually dissociable from scenes. Crucially, the image
scale effect was much larger than the semantic category effect (130
ms vs. 225 ms; post hoc paired one-sided t test, t[26] � 3.15, p �
.002, d � 0.51). Finally, there was no additional speed to be gained
when distractors differed in both image scale and scene category (9
ms difference between reachspace distractors of the same vs.
different semantic category, t[26] � 0.51, p � .31, d � 0.05).

These results reveal that the perceptual distinction between
reachspaces and scenes has a substantially larger impact on visual
search behavior than perceptual distinctions between semantic
categories. Further, these data serve as a replication of one of the
key results in Experiment 1: Reachspaces are not “just scenes”
when it comes to visual search behavior.

Visual Feature Analysis: Three-Way Dissociation in
Computational Image Features

To this point, we have used RT-based behavioral tasks to infer
that our perceptual systems are sensitive to systematic differences
among different views of space. Such perceptual differences must
arise from different image-computable visual statistics present in
each of the views. Thus, we next turned to a computational
modeling approach to bolster this claim with a computational
existence proof of such feature differences and to provide some
insight into the possible nature of these visual feature distinctions.
Specifically, we used deep convolutional neural networks (DNNs),
which can be treated as sophisticated pattern extractors, to measure
visual feature differences among the views. Furthermore, because
these models measure purely visual information—divorced from

Figure 3. Trial design and results for Experiment 2. (A) The four conditions in Experiment 2. The target in
each trial was always a scene image, drawn from one of six semantic categories. These targets were shown
among distractors that could be either of the same or different image scale and the same or different semantic
category. (B) Reaction times are plotted for the four conditions: same view type same category; same view type
different category; different view type different category; different view type different category. Error bars
represent within-subject standard error of the mean (Morey, 2008). See appendix for image attributions.
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semantic interpretation, prior information, or expectations—they
provide a strong test of the hypothesis that the three scales of space
explored here differ in their visual content.

DNNs are currently the state of the art for object and scene
recognition by computer vision systems. Through extensive expo-
sure to natural images, these models learn to detect particular
visual features from an image in order to perform a specified task
(e.g., object categorization, scene categorization). Critically, fea-
ture detector neurons are arranged in hierarchical layers, where
early layers detect simpler image statistics and deeper layers detect
increasingly complex features, based on weighted combinations of
the features in the previous layer. Currently, the features learned
by DNNs are the best model for predicting biological feature
tuning along the visual processing stream, outperforming categor-
ical models and other visual feature models (Cadieu et al., 2014;
Cichy, Khosla, Pantazis, & Oliva, 2017; Güçlü & van Gerven,
2015; Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014),
and can account for some structure in behavioral judgments of
objects similarity (Jozwik, Kriegeskorte, Storrs, & Mur, 2017;
King, Groen, Steel, Kravitz, & Baker, 2018). This correspondence
between models, brains, and behavior is especially noteworthy be-
cause these DNN models were not optimized to predict brains or
behavioral similarity judgments, suggesting that artificial and biolog-
ical systems have arrived at similar solutions of what visual features
are useful for distinguishing among categories, even if learned in very
different ways. Thus, deep neural networks provide a powerful tool
for exploring visual feature dissociations using an artificial visual
system (e.g., Bonner & Epstein, 2018; Groen et al., 2018).

The logic of our approach was to compute deep net feature
responses to the images in the stimulus set and then test whether
reachspaces dissociate from objects and scene images (Figure 4).
We considered two different pretrained neural networks. The first
model was a seven-layer AlexNet architecture trained to perform
object recognition (Krizhevsky, Sutskever, & Hinton, 2012),
henceforth, “ObjectNet,” and the second model had the same
architecture but was trained to perform scene recognition
(“SceneNet”). By comparing these two networks, we can examine
whether any distinctions between objects, reachspaces, and scenes
depend on features learned in service of object-category or scene-
category distinctions. For each layer in each model, we calculated the
response of each feature detector to each image in the set. By com-
paring how well objects, reachspaces, and scenes dissociate in each
layer, we can infer something about the complexity of any features
that distinguish these classes. Finally, we repeated this process for
original full-colored stimuli as well as the controlled stimuli of Ex-
periment 1b. By comparing original and controlled image sets, we can
verify that any dissociations persist across changes in low-level fea-
tures, as they did in human visual search behavior.

Method

Deep neural networks. For each DNN, we used an AlexNet
architecture (Krizhevsky et al., 2012). Images were input at size
224 � 224 � 3 pixels. Layer 1 was a convolutional layer with 64
kernels of size 11 � 11 � 3, with a stride of 4 pixels and padding
of 2 pixels. Layer 2 was a convolutional layer with 192 kernels of
size 5 � 5 � 64, with a stride of 1 pixels and padding of 2 pixels.
Layer 3 was a convolutional layer with 384 kernels of size 3 � 3 �
192, with a stride of 1 pixel and padding of 1 pixel. Layer 4 was

a convolutional layer with 256 kernels of size 3 � 3 � 384, with
a stride of 1 pixel and padding of 1 pixel. Layer 5 was a convo-
lutional layer with 256 kernels of size 3 � 3 � 256, with a stride
of 1 pixel and padding of 1 pixel. Layer 6 and 7 were fully
connected layers of 4,096 neurons each.

One instantiation of this architecture was trained to do 1,000-
way object categorization on the ImageNet database (Russakovsky
et al., 2015). A second instantiation of this architecture was trained
to do 205-way scene categorization using the Places database
(Zhou, Lapedriza, Xiao, Torralba, & Oliva, 2014). Both networks
were built and trained using in-lab software.

The standard AlexNet training regime was adopted using a public
code package1 that was optimized for multithreaded DNN training in
Torch7. Specifically, stochastic gradient descent optimization was
used with 0.9 momentum, an initial learning rate of 0.02, and weight
decay of 0.0005. Both the learning rate and the weight decay follow
a predefined decreasing schedule using a minibatch size of 128, with
10,000 minibatches per epoch over a total of 55 training epochs.
Standard data augmentation such as random horizontal flips and
random 224 � 224 crops were performed during training.

Stimuli. The image set was the same as in Experiment 1,
cropped and resized to 224 � 224 pixels to match the expected
input size of Layer 1. Neural net activations were recorded for
full-color versions of the images (“original”) as well as luminance
and spatial frequency-controlled versions (“controlled”).

Feature extraction. After training on either ImageNet or
Places205, DNN weights were frozen, and the activations to our
stimulus images were measured. Image features were extracted
separately from each layer of each network using the following
procedure. For convolutional layers, feature vectors for each image
were extracted before normalization and response pooling opera-
tions, and calculated as the summed total activation of each kernel
over the whole image (i.e., summing over the neurons). For fully
connected layers, the feature vector was simply the activations of
each unit (no summing over the units required).

Analysis. First, to visualize the degree of similarity among
views of different scales, we used multidimensional scaling, which
projects the high-dimensional feature space into two dimensions,
such that images that have more similar feature vectors are located
closer together in space. Differences among images were com-
puted using the Euclidean distance between feature vectors. Non-
metric MDS was then performed over this distance matrix, pro-
jecting the data into 2D space for visualization.

To quantify this similarity, we used k-means clustering to group
the images into three different categories based on their feature
vectors extracted for each layer (k � 3, squared Euclidian distance
metric, 100 replicates). We evaluated how well the clustering
solution matched the ground truth grouping of images by scale
using the Rand index. This index considers the set of pairwise
comparisons between each of the images. Two images grouped
together in both the clustering solution and the ground truth are
counted as a correct pairing, and two items assigned to different
groups in both the clustering solution and the ground truth are
counted as a correct pairing. Grouping accuracy was then com-
puted as the number of correct pairings divided by the total number
of pairs, and multiplied by 100 to yield the grouping accuracy

1 see https://github.com/soumith/imagenet-multiGPU.torch.
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percentage. This outcome measure takes a value of 1 if the clus-
tering solution perfectly agrees with the ground truth but does not
have a clear chance value. Thus, to estimate chance, simulations
were run in which the grouping accuracy was computed when the
object-reachspace-scene labels were randomly shuffled over the
image set. Chance was set as the mean grouping accuracy percent-
age over 1,000 simulations. Finally, given that k-means clustering
is a stochastic process, final clustering solutions depend in part on
the locations of the randomly seeded initial centroids, and the final
Rand index is not a stable number. To converge on a more stable
estimate of the grouping accuracy, the clustering and scoring
process was performed 100 times, and the average Rand index
score is reported.

We also assessed the discriminability of the images using a
naïve Bayes classifier with a leave-one-out cross-validation train-
ing scheme. Features with zero variance were dropped prior to
fitting the model, and feature distributions were modeled using a
kernel density estimator. The classifier predicted whether a held-
out image was an object, reachspace, or scene based on the feature
activations, and classifiers were fit separately for each layer of
ObjectNet and SceneNet, for both original and controlled images.
We additionally performed several auxiliary analyses to test the
discriminability of other divisions in the image set. All auxiliary
analysis were conducted using the naïve Bayes classifier and a
leave-one-out cross-validation scheme.

Results and Discussion

First, we visualized the differences in DNN responses to objects,
reachspaces, and scene images (see Figure 5). Multidimensional
scaling was used to project the high-dimensional feature space
captured in each DNN layer into a 2D plot, such that points that are
more distant in the plot have more dissimilar feature activations.
The figure shows feature spaces derived from a network trained to
discriminate objects categories (Figure 5A) and a network trained
to discriminate scene categories (Figure 5B) for both original and

controlled variants of the image set. There are three main obser-
vations that are evident in this visualization. First, object, reach-
space, and scene images do have different feature activations in
both networks, becoming increasingly distinct in later layers. Sec-
ond, reachspace images are distinguished from both and largely
occupy intermediate positions relative to object and scene images.
Third, these patterns also hold when images were equated in
luminance and spatial frequency, particularly in later layers.

To quantify these observations, we used a data-driven clustering
algorithm to divide the images into three clusters based on the
similarity among their feature activations in each layer. Then, we
calculated how well the data-driven clusters recovered the correct
image classes (see Method, Figure 4). Note that this data-driven
method simply finds the major joints in the visual feature space; it
does not need any training or labels. Thus, any cases in which
data-driven clusters correspond to the distinctions between image
scales indicate that image scale is a major factor in the natural
structure of the similarity space.

Results from the data-driven clustering analysis are shown in
Figure 6 and confirm the patterns evident in the visualizations.
That is, in ObjectNet, the different image scales were consistently
assigned to separate clusters on the basis of their feature activa-
tions, in all layers beyond the lowest level feature representations
of Layer 1 (grouping accuracy for each successive layer: 55%,
66%, 76%, 73%, 71%, 87% and 77%; simulated chance mean:
55%). The same results held when image features were extracted
from SceneNet (grouping accuracy for each layer: 55%, 63%,
71%, 77%, 67%, 86% and 74%; simulated chance mean: 55%).
Further, when considering the feature activations to the controlled
images, all layers beyond the first two showed this same natural
grouping (grouping accuracy ObjectNet: 56%, 54%, 65%, 62%,
67%, 67%, and 66%; SceneNet: 56%, 57%, 62%, 65%, 64%, 68%,
and 67%; simulated chance mean: 55%).

To confirm that the results of the data-driven analysis generalized
to other possible ways of analyzing the data, we also employed a

Figure 4. Extracting deep neural network features. We assessed whether data-driven clustering performed
over the features could recapitulate the division between the three scales of space. Feature were extracted
for each layer of a pre-trained deep neural network. For a given layer, kernel activations were extracted for
every image in the set, then submitted to k-means clustering with k � 3, where images were assigned to
a cluster based on their feature signatures. We then measured the correspondence between the clustering
solution and the ground-truth grouping of the images by scale of space. See appendix for image attributions.
See the online article for the color version of this figure.
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classification approach (Figure 7, top panel). A naïve Bayes classifier
was trained to predict whether a held-out image was an object,
reachspace, or scene based on the feature activations of each net and
each layer. Cross-validated prediction accuracy was above chance in
all layers. Note that the naïve Bayes classifier did not show the
performance boost for original images in Layer fc6 that is apparent in
the data-driven analysis. However, this analysis generally showed a
similar pattern of results to the data driven analysis: Images can be
classified by scale, and classification accuracy was highest in inter-
mediate and later layers, for both ObjectNet and SceneNet, for both
original and controlled image sets.

Finally, we additionally probed a number of other distinctions (see
Figure 7, bottom panel). First, we considered whether objects, reach-
spaces, and scene feature differences would be evident in direct

two-way comparisons. For this analysis, we included only two scales
of space, and used naïve Bayes to assess how distinguishable pairs of
scales are from each other. Overall, we found that objects and scenes
are the most easily distinguished from each other but that reachspaces
remain highly dissociable from both scenes and objects in two-way
comparisons for both original images and controlled images. Second,
we examined whether the six sematic categories were distinguishable
from each other across in these feature spaces. We found that six-way
classification was above chance by later layers, but overall was much
less accurate than classification by scale of space. These results are
consistent with the finding from Experiment 2 that perceptual differ-
ences between reachspaces and scenes were stronger than those for
semantic category.

Figure 5. Multidimensional scaling plots of the feature similarity for objects (yellow dots), reachspaces (blue
dots), and scenes (green dots). (A) Plots for each of the 7 layers of a deep net trained to do object recognition,
where features were extracted from original images (top plot), and controlled images (bottom plot). (B). The
same visualizations are shown as in (A) but for a network trained to classify scene categories. Note that the scale
is different for the original image subplots compared to the controlled image subplots. The order in which data
points were added to the graph was random, and data points are semi-transparent to enable clearer visualization
of the distributions for all three scales of space. See appendix for image attributions.
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Taken together, these results primarily serve as an existence proof
that there are image feature spaces in which reachspaces dissociate
from both scenes and objects. However, these results also begin to
provide some insight into the nature of the features that differentiate
reachspaces from objects and scenes. First, given that grouping accu-
racy increases over layers, and that the correct grouping is still
recovered when differences in luminance and spatial frequency are
minimized, it is likely that features of mid- to high-level complexity
underlie the divisions among scales of space. Second, the fact that
reachspaces dissociated from other scales in both object-trained and
scene-trained networks implies that this distinction does not rely
solely on features specialized for distinguishing between specific
object categories or specific scene categories. Third, the MDS visu-
alization suggest that reachspaces occupy an intermediate position
between objects and scenes in these feature spaces, further comple-
menting the patterns in the behavioral data.

General Discussion

Research on the visual representation of the environment has
proceeded largely by drawing a division between single objects
and full-scale scenes, even though this may be an oversimplifica-
tion of continuous visual experience (cf. Henderson & Holling-
worth, 1999). In the present study, we explicitly move away from
this approach and directly ask whether near-scale views of the
environment, reachspaces, are perceptually distinct from full-scale
scene views as well as singleton object views. Using human
behavioral studies and deep neural networks, we found strong
evidence for this dissociation. In Experiment 1 of the behavioral
studies, visual search patterns showed a three-way dissociation
between objects, reachspaces, and scenes for both luminance-
matched and spatial-frequency-matched image sets. In Experiment
2, we showed that the perceptual difference between scenes and
reachspaces was substantial: The magnitude of perceptual differ-
ences between scenes and reachspaces was much larger than the

differences between scene categories in this image set. Finally,
complementing these patterns in human behavior, we found that
the features spaces learned by two different deep neural networks
also naturally dissociate reachspace views relative to objects and
scene views.

Taken together, the current study demonstrates that there are
systematic feature distinctions between reachspaces and scenes,
detectable by the human perceptual system, likely related to visual
features of intermediate complexity. Although it may be tempting
to interpret this dissociation as evidence that reachspaces and
scenes are separate mental categories, the present data do not
support that inference, and future work will be required to explore
this possibility. Rather, the current results point to the existence of
systematic differences in perceptual content between scales of
space previously treated as interchangeable. These results high-
light that models of scene perception that do not distinguish
between near and far space may be incomplete. In the following
sections, we discuss the nature of the feature differences between
reachspaces and scenes, the broader construct of reachspaces, and
the implications that this perceptual division of space may have for
our cognitive and neural architecture.

The Nature of the Visual Feature Distinctions

Given that reachspaces look systematically different from full-
scale scenes, what are the visual features supporting this dissoci-
ation? We can draw some inferences about these features from the
modeling results. Previous work has shown that in deep neural
networks trained to do object or scene recognition, feature tuning
increases in complexity over successive layers (Güçlü & van
Gerven, 2015; Zeiler & Fergus, 2014; Zhou, Lapedriza, Xiao,
Torralba, & Oliva, 2014), in which Layer 1 is dominated almost
exclusively by representations of simple elements (oriented lines
and colors), Layers 2 and 3 see an increase in representations of
textures and surfaces alongside the simple elements, and later

Figure 6. Grouping accuracy results. The grouping accuracy score reflects how well the data-driven clusters
recover the object, reachspace, and scene classes, quantified with the Rand index. Grouping accuracy is plotted
separately for ObjectNet (left) and SceneNet (right), for each layer, for both original images (dark gray bars) and
controlled images (light gray bars). Chance was estimated separately for condition (small black horizontal line
on each bar), with the range of chance values across these conditions depicted (light gray bar).
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layers (4 and 5) contain representations of object parts and full
objects (Zhou et al., 2014). Given that all layers beyond the first
one or two were sensitive to the object-reachspace-scene distinc-
tion, this suggests that mid-level features such as texture and
surfaces, as well as high-level features such as object parts and
entire objects, may largely underlie the dissociation, whereas sim-
ple elements such as color, contrast, and oriented lines do not.

There are also fundamental differences in the structure and
constituent parts of reachspaces and scenes that may suggest
other mid-level perceptual feature differences to explore. For
example, reachspaces are dominated by small objects (e.g.,
bowls, sinks, pots), whereas scenes are dominated by large ones
(e.g., tables, desks, rugs). Given that curvature varies with
object size (Long et al., 2016; Long, Yu, & Konkle, 2018), it is
possible that reachspaces have more curved contours, whereas
scenes have more rectilinear contours. Additionally, the reach-
spaces in this stimulus set all have a bounded surface on the

bottom and are open on the top, whereas indoor rooms are
enclosed on all sides. Thus, there are likely systematic differ-
ences in 3D layout features and the spatial envelope of the
views (Oliva & Torralba, 2001, 2006). Finally, full-scene views
encompass larger environments, and thus may include more
elements and give rise to more perceptual clutter than reach-
spaces.

One open question is whether reachspaces are encoded in the
visual system with distinct perceptual primitives. That is, are
reachspaces processed by specific perceptual analyzers that are
primarily dedicated to processing near-scale spaces? Or are
reachspace processed by weighted combinations of perceptual
analyzers devoted to object-specific and scene-specific process-
ing? One potential way to gain insight into this question is to
leverage functional neuroimaging: If reachspaces drive some
regions along the visual processing stream more strongly than
both objects and scenes, this result would favor the possibility

Figure 7. Auxiliary results, using naïve Bayes classification with leave-one-out cross-validation. The top panel
reports the results of three-way classification of the images into the three scales of space (objects, O; reachspaces,
RS; and scenes, S), for both raw and controlled images, in a network pretrained to-do object classification or
scene classification (chance for this comparison was 33.3%). The middle panel reports two-way classification
accuracy, testing the discriminability of pairs of images (chance for these comparisons was 50%). The bottom
panel reports six-way classification accuracy for distinguishing among the six semantic categories, when
considering all the images together or only the reachspaces and scenes together, for both raw and controlled
images, in both networks (chance for these comparisons was 16.6%). Cells in the table are shaded by their
accuracy relative to chance for that particular comparison, with chance grouping performance in light gray and
100% accuracy in dark gray.
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that reachspaces are not simply intermediate and instead may
have perceptual features of their own. However, regardless of
the nature of the feature distinction, we have shown that for
human perception, reachspace views are systematically differ-
ent than scene views.

Boundary Conditions of Reachspaces

In the present work, we sampled our stimuli from what we think
of as “canonical” reachspaces. That is, all reachspace views were
of task-relevant near-scale spaces, largely within arm’s reach,
made up of semantically related objects arrayed on a horizontal
surface, drawn from everyday contexts. However, there are other
kinds of near-scale spaces with different characteristics. For ex-
ample, bookshelves, pantries, ATMs, and vending machines are
spaces in which we use our hands to manipulate objects, but they
are primarily defined by a vertical plane. Likewise, photocopiers,
ATMs, and digital kiosks are made up of single large objects rather
than multiple discreet objects. Would views of such noncanonical
reachspaces still dissociate from scenes and objects, and would
they group with more canonical reachspaces? Further, the inter-
mediate perceptual status of our reachspaces relative to objects and
scenes also raises an important question: Do reachspaces reflect a
point along a continuum from scenes to objects, characterized by
smooth changes in perceptual features as the scale of space in-
creases from objects to scenes, or are there more categorical
boundaries in which reachspaces reflect a distinct kind, character-
ized by abrupt changes in perceptual primitives from one scale to
the next? Understanding the boundary conditions of what is a
reachspace and understanding their categorical status are important
new directions that arise from these results.

Implications for Cognitive and Neural Architecture

The evidence for a perceptual dissociation, falling along func-
tionally relevant divisions of space, provides the foundation for
future work exploring whether differences in neural and cognitive
representations run alongside the perceptual differences reported
here. Previous work has shown that patterns of neural activity in
occipitotemporal cortex reflect low- and mid-level feature tuning
(Groen, Ghebreab, Lamme, & Scholte, 2012; Groen, Silson, &
Baker, 2017; Long et al., 2018; Watson, Young, & Andrews,
2016) as well as spatial layout and functional affordances (Bonner
& Epstein, 2017; Park, Konkle, & Oliva, 2015). Thus, it is possible
that reachspaces will have distinct neural signatures along the
ventral stream. Indeed, some previous evidence suggests that
scene-processing areas can distinguish between near- and far-scale
spaces (Henderson, Larson, & Zhu, 2008; but see Epstein et al.,
2003). It is also likely that reachspace views engage cognitive
processes that are not engaged by scenes and objects. For example,
performing a task in a reachspace requires you to track the state of
the task, the properties of the objects that signal the next step, and
the possible hand actions to be performed during that step (Hay-
hoe, 2000; Kirsh, 1995; Triesch, Ballard, Hayhoe, & Sullivan,
2003), while navigating through a scene requires you to track a
very different set of attributes. Given that we spend most of our
days in environments in which objects are within reach and we are
performing tasks, it is surprising that we still know very little about
how these environments are represented. This study represents a

step in extending our understanding of object and scene perception
mechanisms to the perception of reachable space.
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Appendix

Sample Size Estimation

All experiments were initially run with 12 subjects each, which,
in the past, has been a standard sample size in visual search
studies. However, among new efforts to increase reliability and
replicability of results, reviewers requested that we add subjects in
each experiment to increase power. To estimate a new target
sample size, we used a simulation technique to estimate power
over a range of sample sizes. We set the desired power value to
80% to detect the difference between scenes-among-scenes and
scenes-among-reachspaces (one of our two critical effects).

In this simulation approach, hypothetical data sets for a range of
sample sizes were constructed from previously obtained data.
Specifically, for a given sample size, subjects were randomly
sampled with replacement from the initial 12 subjects in the
experiment. Trials were obtained for each of these simulated
subjects by randomly sampling trials with replacement from the
subject’s original trials. The simulated data set had the same
number of trials per condition as the source dataset. Next, the
average reaction time for each subject in each condition was
calculated from this simulated data set, and a paired t test was
performed for the critical comparison. This simulation was re-
peated 1,000 times, and power was calculated as the percent of
those simulations where p � .05. This process was repeated for
each sample size ranging from 10 to 120 participants, and the
lowest sample size that achieved at least 80% power was recorded.

Applying this method, we obtained an estimated sample size of
28 from the Experiment 1a data, and 15 subjects from the Exper-
iment 1b data. To derive a final sample size estimate that would be

more robust to differences in variability between these two data
sets, the samples size estimates were averaged over the two ex-
periments, yielding a final sample size of 22 for both experiments.
To estimate sample size for Experiment 2, which has fewer trials
per condition than Experiment 1, we repeated the simulation but
sampled 30 trials per conditions during the trial-sampling step,
matching the design of Experiment 2. Estimates were again de-
rived from Experiments 1a and 1b data separately and were aver-
aged to yield a final sample size of 27 subjects for Experiment 2.

Following these analyses, additional data were collected to bring
the total number of participants from 12 to 22 in both Experiments
1a and 1b, and to bring the total participants from 12 to 27 in
Experiment 2. The overall patterns in the results were not changed
by adding more participants, but all effects were substantially more
robust.

Image Attributions

All images used in the paper were public domain images se-
lected to resemble the experimental stimuli. Images were obtained
from Flickr.com, PixHere.com, Pexel.com or MaxPixel.net, and all
were either under a CC0 or CC2 license (free to use and modify
without attribution).
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